Houjie
2025-07-24 1bc8f80935add7215fa98de1ab8b375b222a2046
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*namespace com.google.zxing.common.reedsolomon {*/
import GenericGF from './GenericGF';
import GenericGFPoly from './GenericGFPoly';
import ReedSolomonException from '../../ReedSolomonException';
import IllegalStateException from '../../IllegalStateException';
/**
 * <p>Implements Reed-Solomon decoding, as the name implies.</p>
 *
 * <p>The algorithm will not be explained here, but the following references were helpful
 * in creating this implementation:</p>
 *
 * <ul>
 * <li>Bruce Maggs.
 * <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
 * "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
 * <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
 * "Chapter 5. Generalized Reed-Solomon Codes"</a>
 * (see discussion of Euclidean algorithm)</li>
 * </ul>
 *
 * <p>Much credit is due to William Rucklidge since portions of this code are an indirect
 * port of his C++ Reed-Solomon implementation.</p>
 *
 * @author Sean Owen
 * @author William Rucklidge
 * @author sanfordsquires
 */
export default class ReedSolomonDecoder {
    constructor(field) {
        this.field = field;
    }
    /**
     * <p>Decodes given set of received codewords, which include both data and error-correction
     * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
     * in the input.</p>
     *
     * @param received data and error-correction codewords
     * @param twoS number of error-correction codewords available
     * @throws ReedSolomonException if decoding fails for any reason
     */
    decode(received, twoS /*int*/) {
        const field = this.field;
        const poly = new GenericGFPoly(field, received);
        const syndromeCoefficients = new Int32Array(twoS);
        let noError = true;
        for (let i = 0; i < twoS; i++) {
            const evalResult = poly.evaluateAt(field.exp(i + field.getGeneratorBase()));
            syndromeCoefficients[syndromeCoefficients.length - 1 - i] = evalResult;
            if (evalResult !== 0) {
                noError = false;
            }
        }
        if (noError) {
            return;
        }
        const syndrome = new GenericGFPoly(field, syndromeCoefficients);
        const sigmaOmega = this.runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
        const sigma = sigmaOmega[0];
        const omega = sigmaOmega[1];
        const errorLocations = this.findErrorLocations(sigma);
        const errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations);
        for (let i = 0; i < errorLocations.length; i++) {
            const position = received.length - 1 - field.log(errorLocations[i]);
            if (position < 0) {
                throw new ReedSolomonException('Bad error location');
            }
            received[position] = GenericGF.addOrSubtract(received[position], errorMagnitudes[i]);
        }
    }
    runEuclideanAlgorithm(a, b, R /*int*/) {
        // Assume a's degree is >= b's
        if (a.getDegree() < b.getDegree()) {
            const temp = a;
            a = b;
            b = temp;
        }
        const field = this.field;
        let rLast = a;
        let r = b;
        let tLast = field.getZero();
        let t = field.getOne();
        // Run Euclidean algorithm until r's degree is less than R/2
        while (r.getDegree() >= (R / 2 | 0)) {
            let rLastLast = rLast;
            let tLastLast = tLast;
            rLast = r;
            tLast = t;
            // Divide rLastLast by rLast, with quotient in q and remainder in r
            if (rLast.isZero()) {
                // Oops, Euclidean algorithm already terminated?
                throw new ReedSolomonException('r_{i-1} was zero');
            }
            r = rLastLast;
            let q = field.getZero();
            const denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
            const dltInverse = field.inverse(denominatorLeadingTerm);
            while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
                const degreeDiff = r.getDegree() - rLast.getDegree();
                const scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
                q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale));
                r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
            }
            t = q.multiply(tLast).addOrSubtract(tLastLast);
            if (r.getDegree() >= rLast.getDegree()) {
                throw new IllegalStateException('Division algorithm failed to reduce polynomial?');
            }
        }
        const sigmaTildeAtZero = t.getCoefficient(0);
        if (sigmaTildeAtZero === 0) {
            throw new ReedSolomonException('sigmaTilde(0) was zero');
        }
        const inverse = field.inverse(sigmaTildeAtZero);
        const sigma = t.multiplyScalar(inverse);
        const omega = r.multiplyScalar(inverse);
        return [sigma, omega];
    }
    findErrorLocations(errorLocator) {
        // This is a direct application of Chien's search
        const numErrors = errorLocator.getDegree();
        if (numErrors === 1) { // shortcut
            return Int32Array.from([errorLocator.getCoefficient(1)]);
        }
        const result = new Int32Array(numErrors);
        let e = 0;
        const field = this.field;
        for (let i = 1; i < field.getSize() && e < numErrors; i++) {
            if (errorLocator.evaluateAt(i) === 0) {
                result[e] = field.inverse(i);
                e++;
            }
        }
        if (e !== numErrors) {
            throw new ReedSolomonException('Error locator degree does not match number of roots');
        }
        return result;
    }
    findErrorMagnitudes(errorEvaluator, errorLocations) {
        // This is directly applying Forney's Formula
        const s = errorLocations.length;
        const result = new Int32Array(s);
        const field = this.field;
        for (let i = 0; i < s; i++) {
            const xiInverse = field.inverse(errorLocations[i]);
            let denominator = 1;
            for (let j = 0; j < s; j++) {
                if (i !== j) {
                    // denominator = field.multiply(denominator,
                    //    GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)))
                    // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
                    // Below is a funny-looking workaround from Steven Parkes
                    const term = field.multiply(errorLocations[j], xiInverse);
                    const termPlus1 = (term & 0x1) === 0 ? term | 1 : term & ~1;
                    denominator = field.multiply(denominator, termPlus1);
                }
            }
            result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator));
            if (field.getGeneratorBase() !== 0) {
                result[i] = field.multiply(result[i], xiInverse);
            }
        }
        return result;
    }
}