/*
|
* Copyright 2007 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
/*namespace com.google.zxing.common.reedsolomon {*/
|
import GenericGF from './GenericGF';
|
import GenericGFPoly from './GenericGFPoly';
|
import ReedSolomonException from '../../ReedSolomonException';
|
import IllegalStateException from '../../IllegalStateException';
|
/**
|
* <p>Implements Reed-Solomon decoding, as the name implies.</p>
|
*
|
* <p>The algorithm will not be explained here, but the following references were helpful
|
* in creating this implementation:</p>
|
*
|
* <ul>
|
* <li>Bruce Maggs.
|
* <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
|
* "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
|
* <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
|
* "Chapter 5. Generalized Reed-Solomon Codes"</a>
|
* (see discussion of Euclidean algorithm)</li>
|
* </ul>
|
*
|
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect
|
* port of his C++ Reed-Solomon implementation.</p>
|
*
|
* @author Sean Owen
|
* @author William Rucklidge
|
* @author sanfordsquires
|
*/
|
var ReedSolomonDecoder = /** @class */ (function () {
|
function ReedSolomonDecoder(field) {
|
this.field = field;
|
}
|
/**
|
* <p>Decodes given set of received codewords, which include both data and error-correction
|
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
|
* in the input.</p>
|
*
|
* @param received data and error-correction codewords
|
* @param twoS number of error-correction codewords available
|
* @throws ReedSolomonException if decoding fails for any reason
|
*/
|
ReedSolomonDecoder.prototype.decode = function (received, twoS /*int*/) {
|
var field = this.field;
|
var poly = new GenericGFPoly(field, received);
|
var syndromeCoefficients = new Int32Array(twoS);
|
var noError = true;
|
for (var i = 0; i < twoS; i++) {
|
var evalResult = poly.evaluateAt(field.exp(i + field.getGeneratorBase()));
|
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = evalResult;
|
if (evalResult !== 0) {
|
noError = false;
|
}
|
}
|
if (noError) {
|
return;
|
}
|
var syndrome = new GenericGFPoly(field, syndromeCoefficients);
|
var sigmaOmega = this.runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
|
var sigma = sigmaOmega[0];
|
var omega = sigmaOmega[1];
|
var errorLocations = this.findErrorLocations(sigma);
|
var errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations);
|
for (var i = 0; i < errorLocations.length; i++) {
|
var position = received.length - 1 - field.log(errorLocations[i]);
|
if (position < 0) {
|
throw new ReedSolomonException('Bad error location');
|
}
|
received[position] = GenericGF.addOrSubtract(received[position], errorMagnitudes[i]);
|
}
|
};
|
ReedSolomonDecoder.prototype.runEuclideanAlgorithm = function (a, b, R /*int*/) {
|
// Assume a's degree is >= b's
|
if (a.getDegree() < b.getDegree()) {
|
var temp = a;
|
a = b;
|
b = temp;
|
}
|
var field = this.field;
|
var rLast = a;
|
var r = b;
|
var tLast = field.getZero();
|
var t = field.getOne();
|
// Run Euclidean algorithm until r's degree is less than R/2
|
while (r.getDegree() >= (R / 2 | 0)) {
|
var rLastLast = rLast;
|
var tLastLast = tLast;
|
rLast = r;
|
tLast = t;
|
// Divide rLastLast by rLast, with quotient in q and remainder in r
|
if (rLast.isZero()) {
|
// Oops, Euclidean algorithm already terminated?
|
throw new ReedSolomonException('r_{i-1} was zero');
|
}
|
r = rLastLast;
|
var q = field.getZero();
|
var denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
|
var dltInverse = field.inverse(denominatorLeadingTerm);
|
while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
|
var degreeDiff = r.getDegree() - rLast.getDegree();
|
var scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
|
q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale));
|
r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
|
}
|
t = q.multiply(tLast).addOrSubtract(tLastLast);
|
if (r.getDegree() >= rLast.getDegree()) {
|
throw new IllegalStateException('Division algorithm failed to reduce polynomial?');
|
}
|
}
|
var sigmaTildeAtZero = t.getCoefficient(0);
|
if (sigmaTildeAtZero === 0) {
|
throw new ReedSolomonException('sigmaTilde(0) was zero');
|
}
|
var inverse = field.inverse(sigmaTildeAtZero);
|
var sigma = t.multiplyScalar(inverse);
|
var omega = r.multiplyScalar(inverse);
|
return [sigma, omega];
|
};
|
ReedSolomonDecoder.prototype.findErrorLocations = function (errorLocator) {
|
// This is a direct application of Chien's search
|
var numErrors = errorLocator.getDegree();
|
if (numErrors === 1) { // shortcut
|
return Int32Array.from([errorLocator.getCoefficient(1)]);
|
}
|
var result = new Int32Array(numErrors);
|
var e = 0;
|
var field = this.field;
|
for (var i = 1; i < field.getSize() && e < numErrors; i++) {
|
if (errorLocator.evaluateAt(i) === 0) {
|
result[e] = field.inverse(i);
|
e++;
|
}
|
}
|
if (e !== numErrors) {
|
throw new ReedSolomonException('Error locator degree does not match number of roots');
|
}
|
return result;
|
};
|
ReedSolomonDecoder.prototype.findErrorMagnitudes = function (errorEvaluator, errorLocations) {
|
// This is directly applying Forney's Formula
|
var s = errorLocations.length;
|
var result = new Int32Array(s);
|
var field = this.field;
|
for (var i = 0; i < s; i++) {
|
var xiInverse = field.inverse(errorLocations[i]);
|
var denominator = 1;
|
for (var j = 0; j < s; j++) {
|
if (i !== j) {
|
// denominator = field.multiply(denominator,
|
// GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)))
|
// Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
|
// Below is a funny-looking workaround from Steven Parkes
|
var term = field.multiply(errorLocations[j], xiInverse);
|
var termPlus1 = (term & 0x1) === 0 ? term | 1 : term & ~1;
|
denominator = field.multiply(denominator, termPlus1);
|
}
|
}
|
result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse), field.inverse(denominator));
|
if (field.getGeneratorBase() !== 0) {
|
result[i] = field.multiply(result[i], xiInverse);
|
}
|
}
|
return result;
|
};
|
return ReedSolomonDecoder;
|
}());
|
export default ReedSolomonDecoder;
|