/*
|
* Copyright 2009 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
var __extends = (this && this.__extends) || (function () {
|
var extendStatics = function (d, b) {
|
extendStatics = Object.setPrototypeOf ||
|
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
|
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
|
return extendStatics(d, b);
|
};
|
return function (d, b) {
|
extendStatics(d, b);
|
function __() { this.constructor = d; }
|
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
|
};
|
})();
|
import GlobalHistogramBinarizer from './GlobalHistogramBinarizer';
|
import BitMatrix from './BitMatrix';
|
/**
|
* This class implements a local thresholding algorithm, which while slower than the
|
* GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for
|
* high frequency images of barcodes with black data on white backgrounds. For this application,
|
* it does a much better job than a global blackpoint with severe shadows and gradients.
|
* However it tends to produce artifacts on lower frequency images and is therefore not
|
* a good general purpose binarizer for uses outside ZXing.
|
*
|
* This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers,
|
* and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already
|
* inherently local, and only fails for horizontal gradients. We can revisit that problem later,
|
* but for now it was not a win to use local blocks for 1D.
|
*
|
* This Binarizer is the default for the unit tests and the recommended class for library users.
|
*
|
* @author dswitkin@google.com (Daniel Switkin)
|
*/
|
var HybridBinarizer = /** @class */ (function (_super) {
|
__extends(HybridBinarizer, _super);
|
function HybridBinarizer(source) {
|
var _this = _super.call(this, source) || this;
|
_this.matrix = null;
|
return _this;
|
}
|
/**
|
* Calculates the final BitMatrix once for all requests. This could be called once from the
|
* constructor instead, but there are some advantages to doing it lazily, such as making
|
* profiling easier, and not doing heavy lifting when callers don't expect it.
|
*/
|
/*@Override*/
|
HybridBinarizer.prototype.getBlackMatrix = function () {
|
if (this.matrix !== null) {
|
return this.matrix;
|
}
|
var source = this.getLuminanceSource();
|
var width = source.getWidth();
|
var height = source.getHeight();
|
if (width >= HybridBinarizer.MINIMUM_DIMENSION && height >= HybridBinarizer.MINIMUM_DIMENSION) {
|
var luminances = source.getMatrix();
|
var subWidth = width >> HybridBinarizer.BLOCK_SIZE_POWER;
|
if ((width & HybridBinarizer.BLOCK_SIZE_MASK) !== 0) {
|
subWidth++;
|
}
|
var subHeight = height >> HybridBinarizer.BLOCK_SIZE_POWER;
|
if ((height & HybridBinarizer.BLOCK_SIZE_MASK) !== 0) {
|
subHeight++;
|
}
|
var blackPoints = HybridBinarizer.calculateBlackPoints(luminances, subWidth, subHeight, width, height);
|
var newMatrix = new BitMatrix(width, height);
|
HybridBinarizer.calculateThresholdForBlock(luminances, subWidth, subHeight, width, height, blackPoints, newMatrix);
|
this.matrix = newMatrix;
|
}
|
else {
|
// If the image is too small, fall back to the global histogram approach.
|
this.matrix = _super.prototype.getBlackMatrix.call(this);
|
}
|
return this.matrix;
|
};
|
/*@Override*/
|
HybridBinarizer.prototype.createBinarizer = function (source) {
|
return new HybridBinarizer(source);
|
};
|
/**
|
* For each block in the image, calculate the average black point using a 5x5 grid
|
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based
|
* on the last pixels in the row/column which are also used in the previous block).
|
*/
|
HybridBinarizer.calculateThresholdForBlock = function (luminances, subWidth /*int*/, subHeight /*int*/, width /*int*/, height /*int*/, blackPoints, matrix) {
|
var maxYOffset = height - HybridBinarizer.BLOCK_SIZE;
|
var maxXOffset = width - HybridBinarizer.BLOCK_SIZE;
|
for (var y = 0; y < subHeight; y++) {
|
var yoffset = y << HybridBinarizer.BLOCK_SIZE_POWER;
|
if (yoffset > maxYOffset) {
|
yoffset = maxYOffset;
|
}
|
var top_1 = HybridBinarizer.cap(y, 2, subHeight - 3);
|
for (var x = 0; x < subWidth; x++) {
|
var xoffset = x << HybridBinarizer.BLOCK_SIZE_POWER;
|
if (xoffset > maxXOffset) {
|
xoffset = maxXOffset;
|
}
|
var left = HybridBinarizer.cap(x, 2, subWidth - 3);
|
var sum = 0;
|
for (var z = -2; z <= 2; z++) {
|
var blackRow = blackPoints[top_1 + z];
|
sum += blackRow[left - 2] + blackRow[left - 1] + blackRow[left] + blackRow[left + 1] + blackRow[left + 2];
|
}
|
var average = sum / 25;
|
HybridBinarizer.thresholdBlock(luminances, xoffset, yoffset, average, width, matrix);
|
}
|
}
|
};
|
HybridBinarizer.cap = function (value /*int*/, min /*int*/, max /*int*/) {
|
return value < min ? min : value > max ? max : value;
|
};
|
/**
|
* Applies a single threshold to a block of pixels.
|
*/
|
HybridBinarizer.thresholdBlock = function (luminances, xoffset /*int*/, yoffset /*int*/, threshold /*int*/, stride /*int*/, matrix) {
|
for (var y = 0, offset = yoffset * stride + xoffset; y < HybridBinarizer.BLOCK_SIZE; y++, offset += stride) {
|
for (var x = 0; x < HybridBinarizer.BLOCK_SIZE; x++) {
|
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0.
|
if ((luminances[offset + x] & 0xFF) <= threshold) {
|
matrix.set(xoffset + x, yoffset + y);
|
}
|
}
|
}
|
};
|
/**
|
* Calculates a single black point for each block of pixels and saves it away.
|
* See the following thread for a discussion of this algorithm:
|
* http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
|
*/
|
HybridBinarizer.calculateBlackPoints = function (luminances, subWidth /*int*/, subHeight /*int*/, width /*int*/, height /*int*/) {
|
var maxYOffset = height - HybridBinarizer.BLOCK_SIZE;
|
var maxXOffset = width - HybridBinarizer.BLOCK_SIZE;
|
// tslint:disable-next-line:whitespace
|
var blackPoints = new Array(subHeight); // subWidth
|
for (var y = 0; y < subHeight; y++) {
|
blackPoints[y] = new Int32Array(subWidth);
|
var yoffset = y << HybridBinarizer.BLOCK_SIZE_POWER;
|
if (yoffset > maxYOffset) {
|
yoffset = maxYOffset;
|
}
|
for (var x = 0; x < subWidth; x++) {
|
var xoffset = x << HybridBinarizer.BLOCK_SIZE_POWER;
|
if (xoffset > maxXOffset) {
|
xoffset = maxXOffset;
|
}
|
var sum = 0;
|
var min = 0xFF;
|
var max = 0;
|
for (var yy = 0, offset = yoffset * width + xoffset; yy < HybridBinarizer.BLOCK_SIZE; yy++, offset += width) {
|
for (var xx = 0; xx < HybridBinarizer.BLOCK_SIZE; xx++) {
|
var pixel = luminances[offset + xx] & 0xFF;
|
sum += pixel;
|
// still looking for good contrast
|
if (pixel < min) {
|
min = pixel;
|
}
|
if (pixel > max) {
|
max = pixel;
|
}
|
}
|
// short-circuit min/max tests once dynamic range is met
|
if (max - min > HybridBinarizer.MIN_DYNAMIC_RANGE) {
|
// finish the rest of the rows quickly
|
for (yy++, offset += width; yy < HybridBinarizer.BLOCK_SIZE; yy++, offset += width) {
|
for (var xx = 0; xx < HybridBinarizer.BLOCK_SIZE; xx++) {
|
sum += luminances[offset + xx] & 0xFF;
|
}
|
}
|
}
|
}
|
// The default estimate is the average of the values in the block.
|
var average = sum >> (HybridBinarizer.BLOCK_SIZE_POWER * 2);
|
if (max - min <= HybridBinarizer.MIN_DYNAMIC_RANGE) {
|
// If variation within the block is low, assume this is a block with only light or only
|
// dark pixels. In that case we do not want to use the average, as it would divide this
|
// low contrast area into black and white pixels, essentially creating data out of noise.
|
//
|
// The default assumption is that the block is light/background. Since no estimate for
|
// the level of dark pixels exists locally, use half the min for the block.
|
average = min / 2;
|
if (y > 0 && x > 0) {
|
// Correct the "white background" assumption for blocks that have neighbors by comparing
|
// the pixels in this block to the previously calculated black points. This is based on
|
// the fact that dark barcode symbology is always surrounded by some amount of light
|
// background for which reasonable black point estimates were made. The bp estimated at
|
// the boundaries is used for the interior.
|
// The (min < bp) is arbitrary but works better than other heuristics that were tried.
|
var averageNeighborBlackPoint = (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) + blackPoints[y - 1][x - 1]) / 4;
|
if (min < averageNeighborBlackPoint) {
|
average = averageNeighborBlackPoint;
|
}
|
}
|
}
|
blackPoints[y][x] = average;
|
}
|
}
|
return blackPoints;
|
};
|
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
|
// So this is the smallest dimension in each axis we can accept.
|
HybridBinarizer.BLOCK_SIZE_POWER = 3;
|
HybridBinarizer.BLOCK_SIZE = 1 << HybridBinarizer.BLOCK_SIZE_POWER; // ...0100...00
|
HybridBinarizer.BLOCK_SIZE_MASK = HybridBinarizer.BLOCK_SIZE - 1; // ...0011...11
|
HybridBinarizer.MINIMUM_DIMENSION = HybridBinarizer.BLOCK_SIZE * 5;
|
HybridBinarizer.MIN_DYNAMIC_RANGE = 24;
|
return HybridBinarizer;
|
}(GlobalHistogramBinarizer));
|
export default HybridBinarizer;
|