/*
|
* Copyright 2009 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
var __extends = (this && this.__extends) || (function () {
|
var extendStatics = function (d, b) {
|
extendStatics = Object.setPrototypeOf ||
|
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
|
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
|
return extendStatics(d, b);
|
};
|
return function (d, b) {
|
extendStatics(d, b);
|
function __() { this.constructor = d; }
|
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
|
};
|
})();
|
/*namespace com.google.zxing.common {*/
|
import Binarizer from '../Binarizer';
|
import BitArray from './BitArray';
|
import BitMatrix from './BitMatrix';
|
import NotFoundException from '../NotFoundException';
|
/**
|
* This Binarizer implementation uses the old ZXing global histogram approach. It is suitable
|
* for low-end mobile devices which don't have enough CPU or memory to use a local thresholding
|
* algorithm. However, because it picks a global black point, it cannot handle difficult shadows
|
* and gradients.
|
*
|
* Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
|
*
|
* @author dswitkin@google.com (Daniel Switkin)
|
* @author Sean Owen
|
*/
|
var GlobalHistogramBinarizer = /** @class */ (function (_super) {
|
__extends(GlobalHistogramBinarizer, _super);
|
function GlobalHistogramBinarizer(source) {
|
var _this = _super.call(this, source) || this;
|
_this.luminances = GlobalHistogramBinarizer.EMPTY;
|
_this.buckets = new Int32Array(GlobalHistogramBinarizer.LUMINANCE_BUCKETS);
|
return _this;
|
}
|
// Applies simple sharpening to the row data to improve performance of the 1D Readers.
|
/*@Override*/
|
GlobalHistogramBinarizer.prototype.getBlackRow = function (y /*int*/, row) {
|
var source = this.getLuminanceSource();
|
var width = source.getWidth();
|
if (row === undefined || row === null || row.getSize() < width) {
|
row = new BitArray(width);
|
}
|
else {
|
row.clear();
|
}
|
this.initArrays(width);
|
var localLuminances = source.getRow(y, this.luminances);
|
var localBuckets = this.buckets;
|
for (var x = 0; x < width; x++) {
|
localBuckets[(localLuminances[x] & 0xff) >> GlobalHistogramBinarizer.LUMINANCE_SHIFT]++;
|
}
|
var blackPoint = GlobalHistogramBinarizer.estimateBlackPoint(localBuckets);
|
if (width < 3) {
|
// Special case for very small images
|
for (var x = 0; x < width; x++) {
|
if ((localLuminances[x] & 0xff) < blackPoint) {
|
row.set(x);
|
}
|
}
|
}
|
else {
|
var left = localLuminances[0] & 0xff;
|
var center = localLuminances[1] & 0xff;
|
for (var x = 1; x < width - 1; x++) {
|
var right = localLuminances[x + 1] & 0xff;
|
// A simple -1 4 -1 box filter with a weight of 2.
|
if (((center * 4) - left - right) / 2 < blackPoint) {
|
row.set(x);
|
}
|
left = center;
|
center = right;
|
}
|
}
|
return row;
|
};
|
// Does not sharpen the data, as this call is intended to only be used by 2D Readers.
|
/*@Override*/
|
GlobalHistogramBinarizer.prototype.getBlackMatrix = function () {
|
var source = this.getLuminanceSource();
|
var width = source.getWidth();
|
var height = source.getHeight();
|
var matrix = new BitMatrix(width, height);
|
// Quickly calculates the histogram by sampling four rows from the image. This proved to be
|
// more robust on the blackbox tests than sampling a diagonal as we used to do.
|
this.initArrays(width);
|
var localBuckets = this.buckets;
|
for (var y = 1; y < 5; y++) {
|
var row = Math.floor((height * y) / 5);
|
var localLuminances_1 = source.getRow(row, this.luminances);
|
var right = Math.floor((width * 4) / 5);
|
for (var x = Math.floor(width / 5); x < right; x++) {
|
var pixel = localLuminances_1[x] & 0xff;
|
localBuckets[pixel >> GlobalHistogramBinarizer.LUMINANCE_SHIFT]++;
|
}
|
}
|
var blackPoint = GlobalHistogramBinarizer.estimateBlackPoint(localBuckets);
|
// We delay reading the entire image luminance until the black point estimation succeeds.
|
// Although we end up reading four rows twice, it is consistent with our motto of
|
// "fail quickly" which is necessary for continuous scanning.
|
var localLuminances = source.getMatrix();
|
for (var y = 0; y < height; y++) {
|
var offset = y * width;
|
for (var x = 0; x < width; x++) {
|
var pixel = localLuminances[offset + x] & 0xff;
|
if (pixel < blackPoint) {
|
matrix.set(x, y);
|
}
|
}
|
}
|
return matrix;
|
};
|
/*@Override*/
|
GlobalHistogramBinarizer.prototype.createBinarizer = function (source) {
|
return new GlobalHistogramBinarizer(source);
|
};
|
GlobalHistogramBinarizer.prototype.initArrays = function (luminanceSize /*int*/) {
|
if (this.luminances.length < luminanceSize) {
|
this.luminances = new Uint8ClampedArray(luminanceSize);
|
}
|
var buckets = this.buckets;
|
for (var x = 0; x < GlobalHistogramBinarizer.LUMINANCE_BUCKETS; x++) {
|
buckets[x] = 0;
|
}
|
};
|
GlobalHistogramBinarizer.estimateBlackPoint = function (buckets) {
|
// Find the tallest peak in the histogram.
|
var numBuckets = buckets.length;
|
var maxBucketCount = 0;
|
var firstPeak = 0;
|
var firstPeakSize = 0;
|
for (var x = 0; x < numBuckets; x++) {
|
if (buckets[x] > firstPeakSize) {
|
firstPeak = x;
|
firstPeakSize = buckets[x];
|
}
|
if (buckets[x] > maxBucketCount) {
|
maxBucketCount = buckets[x];
|
}
|
}
|
// Find the second-tallest peak which is somewhat far from the tallest peak.
|
var secondPeak = 0;
|
var secondPeakScore = 0;
|
for (var x = 0; x < numBuckets; x++) {
|
var distanceToBiggest = x - firstPeak;
|
// Encourage more distant second peaks by multiplying by square of distance.
|
var score = buckets[x] * distanceToBiggest * distanceToBiggest;
|
if (score > secondPeakScore) {
|
secondPeak = x;
|
secondPeakScore = score;
|
}
|
}
|
// Make sure firstPeak corresponds to the black peak.
|
if (firstPeak > secondPeak) {
|
var temp = firstPeak;
|
firstPeak = secondPeak;
|
secondPeak = temp;
|
}
|
// If there is too little contrast in the image to pick a meaningful black point, throw rather
|
// than waste time trying to decode the image, and risk false positives.
|
if (secondPeak - firstPeak <= numBuckets / 16) {
|
throw new NotFoundException();
|
}
|
// Find a valley between them that is low and closer to the white peak.
|
var bestValley = secondPeak - 1;
|
var bestValleyScore = -1;
|
for (var x = secondPeak - 1; x > firstPeak; x--) {
|
var fromFirst = x - firstPeak;
|
var score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]);
|
if (score > bestValleyScore) {
|
bestValley = x;
|
bestValleyScore = score;
|
}
|
}
|
return bestValley << GlobalHistogramBinarizer.LUMINANCE_SHIFT;
|
};
|
GlobalHistogramBinarizer.LUMINANCE_BITS = 5;
|
GlobalHistogramBinarizer.LUMINANCE_SHIFT = 8 - GlobalHistogramBinarizer.LUMINANCE_BITS;
|
GlobalHistogramBinarizer.LUMINANCE_BUCKETS = 1 << GlobalHistogramBinarizer.LUMINANCE_BITS;
|
GlobalHistogramBinarizer.EMPTY = Uint8ClampedArray.from([0]);
|
return GlobalHistogramBinarizer;
|
}(Binarizer));
|
export default GlobalHistogramBinarizer;
|