/*
|
* Copyright 2007 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
/*namespace com.google.zxing.qrcode.detector {*/
|
import DecodeHintType from '../../DecodeHintType';
|
import ResultPoint from '../../ResultPoint';
|
import FinderPattern from './FinderPattern';
|
import FinderPatternInfo from './FinderPatternInfo';
|
import NotFoundException from '../../NotFoundException';
|
/*import java.io.Serializable;*/
|
/*import java.util.ArrayList;*/
|
/*import java.util.Collections;*/
|
/*import java.util.Comparator;*/
|
/*import java.util.List;*/
|
/*import java.util.Map;*/
|
/**
|
* <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
|
* markers at three corners of a QR Code.</p>
|
*
|
* <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.
|
*
|
* @author Sean Owen
|
*/
|
export default class FinderPatternFinder {
|
/**
|
* <p>Creates a finder that will search the image for three finder patterns.</p>
|
*
|
* @param image image to search
|
*/
|
// public constructor(image: BitMatrix) {
|
// this(image, null)
|
// }
|
constructor(image, resultPointCallback) {
|
this.image = image;
|
this.resultPointCallback = resultPointCallback;
|
this.possibleCenters = [];
|
this.crossCheckStateCount = new Int32Array(5);
|
this.resultPointCallback = resultPointCallback;
|
}
|
getImage() {
|
return this.image;
|
}
|
getPossibleCenters() {
|
return this.possibleCenters;
|
}
|
find(hints) {
|
const tryHarder = (hints !== null && hints !== undefined) && undefined !== hints.get(DecodeHintType.TRY_HARDER);
|
const pureBarcode = (hints !== null && hints !== undefined) && undefined !== hints.get(DecodeHintType.PURE_BARCODE);
|
const image = this.image;
|
const maxI = image.getHeight();
|
const maxJ = image.getWidth();
|
// We are looking for black/white/black/white/black modules in
|
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
|
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
|
// image, and then account for the center being 3 modules in size. This gives the smallest
|
// number of pixels the center could be, so skip this often. When trying harder, look for all
|
// QR versions regardless of how dense they are.
|
let iSkip = Math.floor((3 * maxI) / (4 * FinderPatternFinder.MAX_MODULES));
|
if (iSkip < FinderPatternFinder.MIN_SKIP || tryHarder) {
|
iSkip = FinderPatternFinder.MIN_SKIP;
|
}
|
let done = false;
|
const stateCount = new Int32Array(5);
|
for (let i = iSkip - 1; i < maxI && !done; i += iSkip) {
|
// Get a row of black/white values
|
stateCount[0] = 0;
|
stateCount[1] = 0;
|
stateCount[2] = 0;
|
stateCount[3] = 0;
|
stateCount[4] = 0;
|
let currentState = 0;
|
for (let j = 0; j < maxJ; j++) {
|
if (image.get(j, i)) {
|
// Black pixel
|
if ((currentState & 1) === 1) { // Counting white pixels
|
currentState++;
|
}
|
stateCount[currentState]++;
|
}
|
else { // White pixel
|
if ((currentState & 1) === 0) { // Counting black pixels
|
if (currentState === 4) { // A winner?
|
if (FinderPatternFinder.foundPatternCross(stateCount)) { // Yes
|
const confirmed = this.handlePossibleCenter(stateCount, i, j, pureBarcode);
|
if (confirmed === true) {
|
// Start examining every other line. Checking each line turned out to be too
|
// expensive and didn't improve performance.
|
iSkip = 2;
|
if (this.hasSkipped === true) {
|
done = this.haveMultiplyConfirmedCenters();
|
}
|
else {
|
const rowSkip = this.findRowSkip();
|
if (rowSkip > stateCount[2]) {
|
// Skip rows between row of lower confirmed center
|
// and top of presumed third confirmed center
|
// but back up a bit to get a full chance of detecting
|
// it, entire width of center of finder pattern
|
// Skip by rowSkip, but back off by stateCount[2] (size of last center
|
// of pattern we saw) to be conservative, and also back off by iSkip which
|
// is about to be re-added
|
i += rowSkip - stateCount[2] - iSkip;
|
j = maxJ - 1;
|
}
|
}
|
}
|
else {
|
stateCount[0] = stateCount[2];
|
stateCount[1] = stateCount[3];
|
stateCount[2] = stateCount[4];
|
stateCount[3] = 1;
|
stateCount[4] = 0;
|
currentState = 3;
|
continue;
|
}
|
// Clear state to start looking again
|
currentState = 0;
|
stateCount[0] = 0;
|
stateCount[1] = 0;
|
stateCount[2] = 0;
|
stateCount[3] = 0;
|
stateCount[4] = 0;
|
}
|
else { // No, shift counts back by two
|
stateCount[0] = stateCount[2];
|
stateCount[1] = stateCount[3];
|
stateCount[2] = stateCount[4];
|
stateCount[3] = 1;
|
stateCount[4] = 0;
|
currentState = 3;
|
}
|
}
|
else {
|
stateCount[++currentState]++;
|
}
|
}
|
else { // Counting white pixels
|
stateCount[currentState]++;
|
}
|
}
|
}
|
if (FinderPatternFinder.foundPatternCross(stateCount)) {
|
const confirmed = this.handlePossibleCenter(stateCount, i, maxJ, pureBarcode);
|
if (confirmed === true) {
|
iSkip = stateCount[0];
|
if (this.hasSkipped) {
|
// Found a third one
|
done = this.haveMultiplyConfirmedCenters();
|
}
|
}
|
}
|
}
|
const patternInfo = this.selectBestPatterns();
|
ResultPoint.orderBestPatterns(patternInfo);
|
return new FinderPatternInfo(patternInfo);
|
}
|
/**
|
* Given a count of black/white/black/white/black pixels just seen and an end position,
|
* figures the location of the center of this run.
|
*/
|
static centerFromEnd(stateCount, end /*int*/) {
|
return (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0;
|
}
|
/**
|
* @param stateCount count of black/white/black/white/black pixels just read
|
* @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
|
* used by finder patterns to be considered a match
|
*/
|
static foundPatternCross(stateCount) {
|
let totalModuleSize = 0;
|
for (let i = 0; i < 5; i++) {
|
const count = stateCount[i];
|
if (count === 0) {
|
return false;
|
}
|
totalModuleSize += count;
|
}
|
if (totalModuleSize < 7) {
|
return false;
|
}
|
const moduleSize = totalModuleSize / 7.0;
|
const maxVariance = moduleSize / 2.0;
|
// Allow less than 50% variance from 1-1-3-1-1 proportions
|
return Math.abs(moduleSize - stateCount[0]) < maxVariance &&
|
Math.abs(moduleSize - stateCount[1]) < maxVariance &&
|
Math.abs(3.0 * moduleSize - stateCount[2]) < 3 * maxVariance &&
|
Math.abs(moduleSize - stateCount[3]) < maxVariance &&
|
Math.abs(moduleSize - stateCount[4]) < maxVariance;
|
}
|
getCrossCheckStateCount() {
|
const crossCheckStateCount = this.crossCheckStateCount;
|
crossCheckStateCount[0] = 0;
|
crossCheckStateCount[1] = 0;
|
crossCheckStateCount[2] = 0;
|
crossCheckStateCount[3] = 0;
|
crossCheckStateCount[4] = 0;
|
return crossCheckStateCount;
|
}
|
/**
|
* After a vertical and horizontal scan finds a potential finder pattern, this method
|
* "cross-cross-cross-checks" by scanning down diagonally through the center of the possible
|
* finder pattern to see if the same proportion is detected.
|
*
|
* @param startI row where a finder pattern was detected
|
* @param centerJ center of the section that appears to cross a finder pattern
|
* @param maxCount maximum reasonable number of modules that should be
|
* observed in any reading state, based on the results of the horizontal scan
|
* @param originalStateCountTotal The original state count total.
|
* @return true if proportions are withing expected limits
|
*/
|
crossCheckDiagonal(startI /*int*/, centerJ /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) {
|
const stateCount = this.getCrossCheckStateCount();
|
// Start counting up, left from center finding black center mass
|
let i = 0;
|
const image = this.image;
|
while (startI >= i && centerJ >= i && image.get(centerJ - i, startI - i)) {
|
stateCount[2]++;
|
i++;
|
}
|
if (startI < i || centerJ < i) {
|
return false;
|
}
|
// Continue up, left finding white space
|
while (startI >= i && centerJ >= i && !image.get(centerJ - i, startI - i) &&
|
stateCount[1] <= maxCount) {
|
stateCount[1]++;
|
i++;
|
}
|
// If already too many modules in this state or ran off the edge:
|
if (startI < i || centerJ < i || stateCount[1] > maxCount) {
|
return false;
|
}
|
// Continue up, left finding black border
|
while (startI >= i && centerJ >= i && image.get(centerJ - i, startI - i) &&
|
stateCount[0] <= maxCount) {
|
stateCount[0]++;
|
i++;
|
}
|
if (stateCount[0] > maxCount) {
|
return false;
|
}
|
const maxI = image.getHeight();
|
const maxJ = image.getWidth();
|
// Now also count down, right from center
|
i = 1;
|
while (startI + i < maxI && centerJ + i < maxJ && image.get(centerJ + i, startI + i)) {
|
stateCount[2]++;
|
i++;
|
}
|
// Ran off the edge?
|
if (startI + i >= maxI || centerJ + i >= maxJ) {
|
return false;
|
}
|
while (startI + i < maxI && centerJ + i < maxJ && !image.get(centerJ + i, startI + i) &&
|
stateCount[3] < maxCount) {
|
stateCount[3]++;
|
i++;
|
}
|
if (startI + i >= maxI || centerJ + i >= maxJ || stateCount[3] >= maxCount) {
|
return false;
|
}
|
while (startI + i < maxI && centerJ + i < maxJ && image.get(centerJ + i, startI + i) &&
|
stateCount[4] < maxCount) {
|
stateCount[4]++;
|
i++;
|
}
|
if (stateCount[4] >= maxCount) {
|
return false;
|
}
|
// If we found a finder-pattern-like section, but its size is more than 100% different than
|
// the original, assume it's a false positive
|
const stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
|
return Math.abs(stateCountTotal - originalStateCountTotal) < 2 * originalStateCountTotal &&
|
FinderPatternFinder.foundPatternCross(stateCount);
|
}
|
/**
|
* <p>After a horizontal scan finds a potential finder pattern, this method
|
* "cross-checks" by scanning down vertically through the center of the possible
|
* finder pattern to see if the same proportion is detected.</p>
|
*
|
* @param startI row where a finder pattern was detected
|
* @param centerJ center of the section that appears to cross a finder pattern
|
* @param maxCount maximum reasonable number of modules that should be
|
* observed in any reading state, based on the results of the horizontal scan
|
* @return vertical center of finder pattern, or {@link Float#NaN} if not found
|
*/
|
crossCheckVertical(startI /*int*/, centerJ /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) {
|
const image = this.image;
|
const maxI = image.getHeight();
|
const stateCount = this.getCrossCheckStateCount();
|
// Start counting up from center
|
let i = startI;
|
while (i >= 0 && image.get(centerJ, i)) {
|
stateCount[2]++;
|
i--;
|
}
|
if (i < 0) {
|
return NaN;
|
}
|
while (i >= 0 && !image.get(centerJ, i) && stateCount[1] <= maxCount) {
|
stateCount[1]++;
|
i--;
|
}
|
// If already too many modules in this state or ran off the edge:
|
if (i < 0 || stateCount[1] > maxCount) {
|
return NaN;
|
}
|
while (i >= 0 && image.get(centerJ, i) && stateCount[0] <= maxCount) {
|
stateCount[0]++;
|
i--;
|
}
|
if (stateCount[0] > maxCount) {
|
return NaN;
|
}
|
// Now also count down from center
|
i = startI + 1;
|
while (i < maxI && image.get(centerJ, i)) {
|
stateCount[2]++;
|
i++;
|
}
|
if (i === maxI) {
|
return NaN;
|
}
|
while (i < maxI && !image.get(centerJ, i) && stateCount[3] < maxCount) {
|
stateCount[3]++;
|
i++;
|
}
|
if (i === maxI || stateCount[3] >= maxCount) {
|
return NaN;
|
}
|
while (i < maxI && image.get(centerJ, i) && stateCount[4] < maxCount) {
|
stateCount[4]++;
|
i++;
|
}
|
if (stateCount[4] >= maxCount) {
|
return NaN;
|
}
|
// If we found a finder-pattern-like section, but its size is more than 40% different than
|
// the original, assume it's a false positive
|
const stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
|
stateCount[4];
|
if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) {
|
return NaN;
|
}
|
return FinderPatternFinder.foundPatternCross(stateCount) ? FinderPatternFinder.centerFromEnd(stateCount, i) : NaN;
|
}
|
/**
|
* <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,
|
* except it reads horizontally instead of vertically. This is used to cross-cross
|
* check a vertical cross check and locate the real center of the alignment pattern.</p>
|
*/
|
crossCheckHorizontal(startJ /*int*/, centerI /*int*/, maxCount /*int*/, originalStateCountTotal /*int*/) {
|
const image = this.image;
|
const maxJ = image.getWidth();
|
const stateCount = this.getCrossCheckStateCount();
|
let j = startJ;
|
while (j >= 0 && image.get(j, centerI)) {
|
stateCount[2]++;
|
j--;
|
}
|
if (j < 0) {
|
return NaN;
|
}
|
while (j >= 0 && !image.get(j, centerI) && stateCount[1] <= maxCount) {
|
stateCount[1]++;
|
j--;
|
}
|
if (j < 0 || stateCount[1] > maxCount) {
|
return NaN;
|
}
|
while (j >= 0 && image.get(j, centerI) && stateCount[0] <= maxCount) {
|
stateCount[0]++;
|
j--;
|
}
|
if (stateCount[0] > maxCount) {
|
return NaN;
|
}
|
j = startJ + 1;
|
while (j < maxJ && image.get(j, centerI)) {
|
stateCount[2]++;
|
j++;
|
}
|
if (j === maxJ) {
|
return NaN;
|
}
|
while (j < maxJ && !image.get(j, centerI) && stateCount[3] < maxCount) {
|
stateCount[3]++;
|
j++;
|
}
|
if (j === maxJ || stateCount[3] >= maxCount) {
|
return NaN;
|
}
|
while (j < maxJ && image.get(j, centerI) && stateCount[4] < maxCount) {
|
stateCount[4]++;
|
j++;
|
}
|
if (stateCount[4] >= maxCount) {
|
return NaN;
|
}
|
// If we found a finder-pattern-like section, but its size is significantly different than
|
// the original, assume it's a false positive
|
const stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
|
stateCount[4];
|
if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
|
return NaN;
|
}
|
return FinderPatternFinder.foundPatternCross(stateCount) ? FinderPatternFinder.centerFromEnd(stateCount, j) : NaN;
|
}
|
/**
|
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
|
* cross check with a vertical scan, and if successful, will, ah, cross-cross-check
|
* with another horizontal scan. This is needed primarily to locate the real horizontal
|
* center of the pattern in cases of extreme skew.
|
* And then we cross-cross-cross check with another diagonal scan.</p>
|
*
|
* <p>If that succeeds the finder pattern location is added to a list that tracks
|
* the number of times each location has been nearly-matched as a finder pattern.
|
* Each additional find is more evidence that the location is in fact a finder
|
* pattern center
|
*
|
* @param stateCount reading state module counts from horizontal scan
|
* @param i row where finder pattern may be found
|
* @param j end of possible finder pattern in row
|
* @param pureBarcode true if in "pure barcode" mode
|
* @return true if a finder pattern candidate was found this time
|
*/
|
handlePossibleCenter(stateCount, i /*int*/, j /*int*/, pureBarcode) {
|
const stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
|
stateCount[4];
|
let centerJ = FinderPatternFinder.centerFromEnd(stateCount, j);
|
let centerI = this.crossCheckVertical(i, /*(int) */ Math.floor(centerJ), stateCount[2], stateCountTotal);
|
if (!isNaN(centerI)) {
|
// Re-cross check
|
centerJ = this.crossCheckHorizontal(/*(int) */ Math.floor(centerJ), /*(int) */ Math.floor(centerI), stateCount[2], stateCountTotal);
|
if (!isNaN(centerJ) &&
|
(!pureBarcode || this.crossCheckDiagonal(/*(int) */ Math.floor(centerI), /*(int) */ Math.floor(centerJ), stateCount[2], stateCountTotal))) {
|
const estimatedModuleSize = stateCountTotal / 7.0;
|
let found = false;
|
const possibleCenters = this.possibleCenters;
|
for (let index = 0, length = possibleCenters.length; index < length; index++) {
|
const center = possibleCenters[index];
|
// Look for about the same center and module size:
|
if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) {
|
possibleCenters[index] = center.combineEstimate(centerI, centerJ, estimatedModuleSize);
|
found = true;
|
break;
|
}
|
}
|
if (!found) {
|
const point = new FinderPattern(centerJ, centerI, estimatedModuleSize);
|
possibleCenters.push(point);
|
if (this.resultPointCallback !== null && this.resultPointCallback !== undefined) {
|
this.resultPointCallback.foundPossibleResultPoint(point);
|
}
|
}
|
return true;
|
}
|
}
|
return false;
|
}
|
/**
|
* @return number of rows we could safely skip during scanning, based on the first
|
* two finder patterns that have been located. In some cases their position will
|
* allow us to infer that the third pattern must lie below a certain point farther
|
* down in the image.
|
*/
|
findRowSkip() {
|
const max = this.possibleCenters.length;
|
if (max <= 1) {
|
return 0;
|
}
|
let firstConfirmedCenter = null;
|
for (const center of this.possibleCenters) {
|
if (center.getCount() >= FinderPatternFinder.CENTER_QUORUM) {
|
if (firstConfirmedCenter == null) {
|
firstConfirmedCenter = center;
|
}
|
else {
|
// We have two confirmed centers
|
// How far down can we skip before resuming looking for the next
|
// pattern? In the worst case, only the difference between the
|
// difference in the x / y coordinates of the two centers.
|
// This is the case where you find top left last.
|
this.hasSkipped = true;
|
return /*(int) */ Math.floor((Math.abs(firstConfirmedCenter.getX() - center.getX()) -
|
Math.abs(firstConfirmedCenter.getY() - center.getY())) / 2);
|
}
|
}
|
}
|
return 0;
|
}
|
/**
|
* @return true iff we have found at least 3 finder patterns that have been detected
|
* at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the
|
* candidates is "pretty similar"
|
*/
|
haveMultiplyConfirmedCenters() {
|
let confirmedCount = 0;
|
let totalModuleSize = 0.0;
|
const max = this.possibleCenters.length;
|
for (const pattern of this.possibleCenters) {
|
if (pattern.getCount() >= FinderPatternFinder.CENTER_QUORUM) {
|
confirmedCount++;
|
totalModuleSize += pattern.getEstimatedModuleSize();
|
}
|
}
|
if (confirmedCount < 3) {
|
return false;
|
}
|
// OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
|
// and that we need to keep looking. We detect this by asking if the estimated module sizes
|
// vary too much. We arbitrarily say that when the total deviation from average exceeds
|
// 5% of the total module size estimates, it's too much.
|
const average = totalModuleSize / max;
|
let totalDeviation = 0.0;
|
for (const pattern of this.possibleCenters) {
|
totalDeviation += Math.abs(pattern.getEstimatedModuleSize() - average);
|
}
|
return totalDeviation <= 0.05 * totalModuleSize;
|
}
|
/**
|
* @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
|
* those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
|
* size differs from the average among those patterns the least
|
* @throws NotFoundException if 3 such finder patterns do not exist
|
*/
|
selectBestPatterns() {
|
const startSize = this.possibleCenters.length;
|
if (startSize < 3) {
|
// Couldn't find enough finder patterns
|
throw new NotFoundException();
|
}
|
const possibleCenters = this.possibleCenters;
|
let average;
|
// Filter outlier possibilities whose module size is too different
|
if (startSize > 3) {
|
// But we can only afford to do so if we have at least 4 possibilities to choose from
|
let totalModuleSize = 0.0;
|
let square = 0.0;
|
for (const center of this.possibleCenters) {
|
const size = center.getEstimatedModuleSize();
|
totalModuleSize += size;
|
square += size * size;
|
}
|
average = totalModuleSize / startSize;
|
let stdDev = Math.sqrt(square / startSize - average * average);
|
possibleCenters.sort(
|
/**
|
* <p>Orders by furthest from average</p>
|
*/
|
// FurthestFromAverageComparator implements Comparator<FinderPattern>
|
(center1, center2) => {
|
const dA = Math.abs(center2.getEstimatedModuleSize() - average);
|
const dB = Math.abs(center1.getEstimatedModuleSize() - average);
|
return dA < dB ? -1 : dA > dB ? 1 : 0;
|
});
|
const limit = Math.max(0.2 * average, stdDev);
|
for (let i = 0; i < possibleCenters.length && possibleCenters.length > 3; i++) {
|
const pattern = possibleCenters[i];
|
if (Math.abs(pattern.getEstimatedModuleSize() - average) > limit) {
|
possibleCenters.splice(i, 1);
|
i--;
|
}
|
}
|
}
|
if (possibleCenters.length > 3) {
|
// Throw away all but those first size candidate points we found.
|
let totalModuleSize = 0.0;
|
for (const possibleCenter of possibleCenters) {
|
totalModuleSize += possibleCenter.getEstimatedModuleSize();
|
}
|
average = totalModuleSize / possibleCenters.length;
|
possibleCenters.sort(
|
/**
|
* <p>Orders by {@link FinderPattern#getCount()}, descending.</p>
|
*/
|
// CenterComparator implements Comparator<FinderPattern>
|
(center1, center2) => {
|
if (center2.getCount() === center1.getCount()) {
|
const dA = Math.abs(center2.getEstimatedModuleSize() - average);
|
const dB = Math.abs(center1.getEstimatedModuleSize() - average);
|
return dA < dB ? 1 : dA > dB ? -1 : 0;
|
}
|
else {
|
return center2.getCount() - center1.getCount();
|
}
|
});
|
possibleCenters.splice(3); // this is not realy necessary as we only return first 3 anyway
|
}
|
return [
|
possibleCenters[0],
|
possibleCenters[1],
|
possibleCenters[2]
|
];
|
}
|
}
|
FinderPatternFinder.CENTER_QUORUM = 2;
|
FinderPatternFinder.MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
|
FinderPatternFinder.MAX_MODULES = 57; // support up to version 10 for mobile clients
|