Houjie
2025-07-24 52a3ff1bce1417b39f6872d8e8cb378e9c2ccc6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"use strict";
// /*
//  * Copyright 2009 ZXing authors
//  *
//  * Licensed under the Apache License, Version 2.0 (the "License");
//  * you may not use this file except in compliance with the License.
//  * You may obtain a copy of the License at
//  *
//  *      http://www.apache.org/licenses/LICENSE-2.0
//  *
//  * Unless required by applicable law or agreed to in writing, software
//  * distributed under the License is distributed on an "AS IS" BASIS,
//  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  * See the License for the specific language governing permissions and
//  * limitations under the License.
//  */
// /*namespace com.google.zxing.common.detector {*/
// import ResultPoint from '../../ResultPoint'
// import BitMatrix from '../BitMatrix'
// /**
//  * <p>A somewhat generic detector that looks for a barcode-like rectangular region within an image.
//  * It looks within a mostly white region of an image for a region of black and white, but mostly
//  * black. It returns the four corners of the region, as best it can determine.</p>
//  *
//  * @author Sean Owen
//  * @deprecated without replacement since 3.3.0
//  */
// @Deprecated
// export default class MonochromeRectangleDetector {
//   private 32: static final int MAX_MODULES =
//   private image: BitMatrix
//   public constructor(image: BitMatrix) {
//     this.image = image
//   }
//   /**
//    * <p>Detects a rectangular region of black and white -- mostly black -- with a region of mostly
//    * white, in an image.</p>
//    *
//    * @return {@link ResultPoint}[] describing the corners of the rectangular region. The first and
//    *  last points are opposed on the diagonal, as are the second and third. The first point will be
//    *  the topmost point and the last, the bottommost. The second point will be leftmost and the
//    *  third, the rightmost
//    * @throws NotFoundException if no Data Matrix Code can be found
//    */
//   public detect(): ResultPoInt32Array /*throws NotFoundException*/ {
//     height: number /*int*/ = image.getHeight();
//     width: number /*int*/ = image.getWidth();
//     const halfHeight = height / 2
//     const halfWidth = width / 2
//     const deltaY = Math.max(1, height / (MAX_MODULES * 8));
//     const deltaX = Math.max(1, width / (MAX_MODULES * 8));
//     const top = 0
//     const bottom = height
//     const left = 0
//     const right = width
//     ResultPoint pointA = findCornerFromCenter(halfWidth, 0, left, right,
//         halfHeight, -deltaY, top, bottom, halfWidth / 2)
//     top = (int) pointA.getY() - 1
//     ResultPoint pointB = findCornerFromCenter(halfWidth, -deltaX, left, right,
//         halfHeight, 0, top, bottom, halfHeight / 2)
//     left = (int) pointB.getX() - 1
//     ResultPoint pointC = findCornerFromCenter(halfWidth, deltaX, left, right,
//         halfHeight, 0, top, bottom, halfHeight / 2)
//     right = (int) pointC.getX() + 1
//     ResultPoint pointD = findCornerFromCenter(halfWidth, 0, left, right,
//         halfHeight, deltaY, top, bottom, halfWidth / 2)
//     bottom = (int) pointD.getY() + 1
//     // Go try to find point A again with better information -- might have been off at first.
//     pointA = findCornerFromCenter(halfWidth, 0, left, right,
//         halfHeight, -deltaY, top, bottom, halfWidth / 4)
//     return new ResultPoInt32Array { pointA, pointB, pointC, pointD }
//   }
//   /**
//    * Attempts to locate a corner of the barcode by scanning up, down, left or right from a center
//    * point which should be within the barcode.
//    *
//    * @param centerX center's x component (horizontal)
//    * @param deltaX same as deltaY but change in x per step instead
//    * @param left minimum value of x
//    * @param right maximum value of x
//    * @param centerY center's y component (vertical)
//    * @param deltaY change in y per step. If scanning up this is negative; down, positive;
//    *  left or right, 0
//    * @param top minimum value of y to search through (meaningless when di == 0)
//    * @param bottom maximum value of y
//    * @param maxWhiteRun maximum run of white pixels that can still be considered to be within
//    *  the barcode
//    * @return a {@link ResultPoint} encapsulating the corner that was found
//    * @throws NotFoundException if such a point cannot be found
//    */
//   private ResultPoint findCornerFromCenter(centerX: number /*int*/,
//                                            deltaX: number /*int*/,
//                                            left: number /*int*/,
//                                            right: number /*int*/,
//                                            centerY: number /*int*/,
//                                            deltaY: number /*int*/,
//                                            top: number /*int*/,
//                                            bottom: number /*int*/,
//                                            maxWhiteRun: number /*int*/) /*throws NotFoundException*/ {
//     const lastRange: Int32Array = null
//     for (let y = centerY, x = centerX
//          y < bottom && y >= top && x < right && x >= left
//          y += deltaY, x += deltaX) {
//       const range: Int32Array
//       if (deltaX == 0) {
//         // horizontal slices, up and down
//         range = blackWhiteRange(y, maxWhiteRun, left, right, true)
//       } else {
//         // vertical slices, left and right
//         range = blackWhiteRange(x, maxWhiteRun, top, bottom, false)
//       }
//       if (range == null) {
//         if (lastRange == null) {
//           throw NotFoundException.getNotFoundInstance()
//         }
//         // lastRange was found
//         if (deltaX == 0) {
//           const lastY = y - deltaY
//           if (lastRange[0] < centerX) {
//             if (lastRange[1] > centerX) {
//               // straddle, choose one or the other based on direction
//               return new ResultPoint(lastRange[deltaY > 0 ? 0 : 1], lastY)
//             }
//             return new ResultPoint(lastRange[0], lastY)
//           } else {
//             return new ResultPoint(lastRange[1], lastY)
//           }
//         } else {
//           const lastX = x - deltaX
//           if (lastRange[0] < centerY) {
//             if (lastRange[1] > centerY) {
//               return new ResultPoint(lastX, lastRange[deltaX < 0 ? 0 : 1])
//             }
//             return new ResultPoint(lastX, lastRange[0])
//           } else {
//             return new ResultPoint(lastX, lastRange[1])
//           }
//         }
//       }
//       lastRange = range
//     }
//     throw NotFoundException.getNotFoundInstance()
//   }
//   /**
//    * Computes the start and end of a region of pixels, either horizontally or vertically, that could
//    * be part of a Data Matrix barcode.
//    *
//    * @param fixedDimension if scanning horizontally, this is the row (the fixed vertical location)
//    *  where we are scanning. If scanning vertically it's the column, the fixed horizontal location
//    * @param maxWhiteRun largest run of white pixels that can still be considered part of the
//    *  barcode region
//    * @param minDim minimum pixel location, horizontally or vertically, to consider
//    * @param maxDim maximum pixel location, horizontally or vertically, to consider
//    * @param horizontal if true, we're scanning left-right, instead of up-down
//    * @return const with: Int32Array start and end of found range, or null if no such range is found
//    *  (e.g. only white was found)
//    */
//   private const blackWhiteRange: Int32Array(fixedDimension: number /*int*/, maxWhiteRun: number /*int*/, minDim: number /*int*/, maxDim: number /*int*/, boolean horizontal) {
//     const center = (minDim + maxDim) / 2
//     // Scan left/up first
//     const start = center
//     while (start >= minDim) {
//       if (horizontal ? image.get(start, fixedDimension) : image.get(fixedDimension, start)) {
//         start--
//       } else {
//         const whiteRunStart = start
//         do {
//           start--
//         } while (start >= minDim && !(horizontal ? image.get(start, fixedDimension) :
//             image.get(fixedDimension, start)))
//         const whiteRunSize = whiteRunStart - start
//         if (start < minDim || whiteRunSize > maxWhiteRun) {
//           start = whiteRunStart
//           break
//         }
//       }
//     }
//     start++
//     // Then try right/down
//     const end = center
//     while (end < maxDim) {
//       if (horizontal ? image.get(end, fixedDimension) : image.get(fixedDimension, end)) {
//         end++
//       } else {
//         const whiteRunStart = end
//         do {
//           end++
//         } while (end < maxDim && !(horizontal ? image.get(end, fixedDimension) :
//             image.get(fixedDimension, end)))
//         const whiteRunSize = end - whiteRunStart
//         if (end >= maxDim || whiteRunSize > maxWhiteRun) {
//           end = whiteRunStart
//           break
//         }
//       }
//     }
//     end--
//     return end > start ? new Int32Array{start, end} : null
//   }
// }